100-N Area Strontium-90 Treatability Demonstration Project: WBS-01: Phytoremediation Along the 100-N Columbia River Riparian Zone - Field Treatability Study Robert J. Fellows John Fruchter PNNL-SA-61839 **Pacific Northwest National Laboratory** #### Polyphosphate Injection -Apatite Treatment Plan - Primary Recommendation of ITRD Committee. - This approach does not address contaminated sediment in vadose and riparian zones of bank. - ITRD suggested Phytoremediation as a polishing step in the riparian zone. 100-N # Phytoremediation Strontium-90 distribution in soil profile at 100-N shoreline - Phytoremediation a managed, defined, remediation technique in which plants are employed to extract soil contaminants thus reducing the amounts of biologically available soil contaminants to regulatory acceptable levels with minimal soil disturbance. - Rhizofiltration A managed, defined remediation technique in which plants extract contaminants from water flowing through the root mass. - Proposed plant <u>Coyote Willow (Salix exigua)</u> - Native Species - Phreatophyte roots invade water table - Growth Characteristics - Dioecious, rapidly grown from cuttings (large biomass production) - Shrub-like growth habit, Capable of rapid regrowth after harvesting #### Root Characteristics - Fibrous root structure - Root system tolerant of poor drainage and prolonged flooding - Sr extraction from vadose zone, groundwater filtration # Phytoremediation Questions #### Efficiency - Are the plants capable of accumulating Sr? - Is the amount of accumulation sufficient to make the technique viable? - Will the plants produce sufficient biomass? How can this be optimized? (management practices) #### Safety - How can we prevent off-site transfer of detritus (leaves, stems)? - How can we prevent possible herbivore intrusion? - Large and small animals - Insects - What is the clean-up strategy? #### Can Plants Accumulate Sr? - Sr is a Ca nutrient analog plants do not readily differentiate between the two ions. - Mass flow is mainly responsible for Ca and Sr transport to the plant root. - Sr uptake by plants will be proportional to the [Ca/Sr] in the soil solution (porewater) and ⁹⁰Sr uptake will be proportional to the [⁹⁰Sr/Sr]. Laboratory Studies Supported by Fluor Hanford in FY-04 - No significant differentiation of Ca and Sr uptake by willows - No Sr 90Sr differentiation #### 100-N Sediment Studies - Plant CR* = 66 - CR = Concentration Ratio or (pCi/g dry wt. plant tissue)/ (pCi/mL soil porewater) - Plant Extraction 0.065 nCi/g # Phytoremediation Questions #### Efficiency - Are the plants capable of accumulating Sr? Laboratory Study - Is the amount of accumulation sufficient to make the technique viable?- Laboratory Study - Will the plants produce sufficient biomass? How can this be optimized? (management practices) Field Study #### Safety - How can we prevent off-site transfer of detritus (leaves, stems)? - Field Study - How can we prevent possible herbivore intrusion? - Large and small animals - Insects - What is the clean-up strategy? # DOE (FY-07) and Fluor (FY-08) Field Treatability Study - Management practices Optimization of biomass production and ⁹⁰Sr removal (6 mo. FY07) - Fertility practices using Hanford Formation Sediment Greenhouse (completed) - Biomass production in natural environment (FY07 FY09) - Demonstration plot 100-K riparian zone - Control of off-site transport (FY07 FY09) - Different harvesting strategies (biannual), Barriers 100-K riparian zone # 100-K West Plot Set-Up 3/05/07 - Stakes obtained from Wildlands, Inc., of Richland, WA - Coyote Willows (Salix exigua) from Yakima River near Benton City, WA (20 miles E of 100-K) - Proximal end (closest to trunk) placed in water with Rootone[®] (Garden Tech Inc., Lexington, Kentucky) and kept in distilled water for 14 days until roots and shoots have been initiated from the stem. Root Initials on Stake **Placing Plants** Completed Planting # Field Treatability Plot - Diagram of plot with dates and positions of plants harvested in '07. - Harvesting consisted of removing new growth (stems and leaves) down to the second nodes. # Plant Dry Matter Accumulation • Plant dry wt. (g) from all three harvests in first season. | Harvest
Date | Days of
Growth
Prior to
Harvest | Total Tissue (Stems and Leaves) Harvested Dry Wt. | Total Leaf
Tissue
Harvested
Dry Wt. | Average
New
Tissue per
Plant | Estimated
Kg Dry
Wt/Hectare
from
Individual
Plant
Averages ¹ | |--|--|---|--|---------------------------------------|---| | | | (g) | (g) | (g) Avg.±S.D. | | | 7/06/07 | 117 | 263.4 | 161.7 | 13.2±5 | 132 | | 9/14/07 | 187 | 320.5 | 214.3 | 16.0±8.6 | 160 | | 10/17/07 | 220 | 369.9 | 255.3 | 18.5±9.7 | 185 | | 10/17/07
Re-growth
from 1 st
Harvest | 103 ² | | 102.9 ³ | 5.1±3.6 ³ | | - 1 . The plot size = 0.00456 Hectares, and 1 Hectare = 10,000 m², also at 3 ft (\sim 1 m) centers we would have a matrix of 100 x 100 trees or 10,000 trees. This means individual plant weight times 1x10⁴ would approximate anticipated yield. - ^{2.} Days between first harvest and third. - ³. Weight of leaf tissue only. This was used as a standard comparison to the other harvests as leaf initiation was more prevalent than stem growth following harvest. - Dry weight yield obtained in 2007 is about 2% of the proposed 10 Kg/Ha estimated as a target harvest weight for mature trees. This initial season's growth was from cuttings of very young saplings. - The first year's growth is expected however when compared to the data of R.F. Kopp et al., Biomass and Bioenergy 20:1-7. 2001. For cloned willow trees in New York State # Plant Tissue Analysis - Tissue analysis shows Ca/Sr ratio is maintained over growing season. - Plant concentrations of both Ca and Sr increase over time. | Tissue | Harvest Š 1
Jul 2007
Average Ca
Concentrations | Harvest Š 1
Jul 2007
Average Sr
Concentrations | Harvest Š 1 Jul 2007 Average Ratio of Ca/Sr Concentrations | Harvest Š 2
Sep 2007
Average Ca
Concentrations | Harvest Š 2
Sep 2007
Average Sr
Concentrations | Harvest Š 2 Sep 2007 Average Ratio of Ca/Sr Concentrations | |--------|---|---|--|---|---|--| | | (mg/Kg dry wt.) ±
S.D. | | Leaves | 7935±3167 | 34±14 | 235±31 | 17910±2902 | 92 ±21 | 199±33 | | Stem | 5400±1033 | 30±5 | 180±17 | 9565±1686 | 53±12 | 182±21 | | Total | 6668±2656 | 32±10 | 208±37 | 13737±4832 | 73±26 | 191±29 | # **Groundwater Analysis** • Groundwater [Ca/Sr] Ratio (µg/L) | Water Sample Depth | 4/28/07
[Ca/Sr] Ratio | 6/20/07
[Ca/Sr] Ratio | | |--------------------|--------------------------|--------------------------|--| | m | Avg. μg/L ± SD | Avg. μg/L ± SD | | | 1.0 | 223±20 | 278±87 | | | 1.5 | 305±40 | 318±38 | | | 2.0 | 317 ±29 | 294±11 | | #### Lessons Learned in FY-07 - The Columbia River is a dominant force. - Access restrictions caused inevitable delays and variances in schedule and costs. - The willow is hardy and will grow under these conditions. - Dry matter accumulation for the first year is acceptable as the plants are just establishing themselves. - Plant uptake of Sr is in direct relation to the [Ca/Sr] ratio of the soil water. Total plant concentrations of Ca and Sr increase with growth. - Fencing will exclude large and small animal herbivores. #### Field Effort - 2008 - Initial inspection of plants revealed 5 of the 50 showed no new growth as of February 22. - At this time weeds around the plant were cut and new fertilizer spikes were placed. - Within 20 days of this the River had flooded the site. OutsTime™ and a OutsTime™ and a TIFF (Uncompress od) decompress or As watering factors THE Compress of the compress of the compress or As watering factors THE Compress of the compress or THE COMPRESS OF COM # Plot Images in 2008 - Plants have recovered following flooding and are showing vigorous growth. - Management practices of fertilizing and weeding are underway. June 18, 2008 June 24, 2008 July 21, 2008 # Phytoremediation Questions #### Efficiency - Are the plants capable of accumulating Sr? Laboratory Study - Is the amount of accumulation sufficient to make the technique viable?- Laboratory Study - Will the plants produce sufficient biomass? How can this be optimized? (management practices) -Field Study #### Safety - How can we prevent off-site transfer of detritus (leaves, stems)? - Field Study - How can we prevent possible herbivore intrusion? - Large and small animals - Insects - What is the clean-up strategy? # Earned Value Report | Phytoremediation
Field Treatability Study | FY-08 | | |--|----------|--| | BCWS | \$46,533 | | | BCWP | \$38,340 | | | ACWP | \$39,699 | | | SV | -\$8,193 | | | CV | -\$1,320 | | - Values reflect work delays and accompanying lower expenditures caused by River inundation of plot. - Schedule is being re-baselined to reflect field conditions